互联网系统需要处理大量用户的请求。比如微信日活用户破10亿,海量的用户每天产生海量的数量;美团外卖,每天都是几千万的订单,那这些系统的用户表、订单表、交易流水表等是如何处理呢?

数据量只增不减,历史数据又必须要留存,非常容易成为性能的瓶颈,而要解决这样的数据库瓶颈问题,“读写分离”和缓存往往都不合适,目前比较普遍的方案就是使用NoSQL/NewSQL或者采用分库分表。

使用分库分表时,主要有垂直拆分和水平拆分两种拆分模式,都属于物理空间的拆分。

分库分表方案:只分库、只分表、分库又分表。

垂直拆分:由于表数量多导致的单个库大。将表拆分到多个库中。

水平拆分:由于表记录多导致的单个库大。将表记录拆分到多个表中。

拆分方式

垂直拆分

垂直拆分又称为纵向拆分,垂直拆分是将表按库进行分离,或者修改表结构按照访问的差异将某些列拆分出去。应用时有垂直分库和垂直分表两种方式,一般谈到的垂直拆分主要指的是垂直分库。

 如下图所示,采用垂直分库,将用户表和订单表拆分到不同的数据库中。

 垂直分表就是将一张表中不常用的字段拆分到另一张表中,从而保证第一张表中的字段较少,避免出现数据库跨页存储的问题,从而提升查询效率。

解决:一个表中字段过多,还有有些字段经常使用,有些字段不经常使用,或者还有text等字段信息。可以考虑使用垂直分表方案。

 按列进行垂直拆分,即把一条记录分开多个地方保存,每个子表的行数相同。把主键和一些列放到一个表,然后把主键和另外的列放到另一个表中。

 垂直拆分优点:

  • 拆分后业务清晰,拆分规则明确;

  • 易于数据的维护和扩展;

  • 可以使得行数据变小,一个数据块 (Block) 就能存放更多的数据,在查询时就会减少 I/O 次数;

  • 可以达到最大化利用 Cache 的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起;

  • 便于实现冷热分离的数据表设计模式。

垂直拆分缺点:

  • 主键出现冗余,需要管理冗余列;

  • 会引起表连接 JOIN 操作,可以通过在业务服务器上进行 join 来减少数据库压力,提高了系统的复杂度;

  • 依然存在单表数据量过大的问题;

  • 事务处理复杂。

 水平拆分

水平拆分又称为横向拆分。 相对于垂直拆分,它不再将数据根据业务逻辑分类,而是通过某个字 段(或某几个字段),根据某种规则将数据分散至多个库或表中,每个表仅包含数据的一部分,如下图所示。

 水平分表是将一张含有很多记录数的表水平切分,不同的记录可以分开保存,拆分成几张结构相同的表。如果一张表中的记录数过多,那么会对数据库的读写性能产生较大的影响,虽然此时仍然能够正确地读写,但读写的速度已经到了业务无法忍受的地步,此时就需要使用水平分表来解决这个问题。

 水平拆分:解决表中记录过多问题。

垂直拆分:解决表过多或者是表字段过多问题。

水平拆分重点考虑拆分规则:例如范围、时间或Hash算法等。

 水平拆分优点:

  • 拆分规则设计好,join 操作基本可以数据库做;

  • 不存在单库大数据,高并发的性能瓶颈;

  • 切分的表的结构相同,应用层改造较少,只需要增加路由规则即可;

  • 提高了系统的稳定性和负载能力。

水平拆分缺点:

  • 拆分规则难以抽象;

  • 跨库Join性能较差;

  • 分片事务的一致性难以解决;

  • 数据扩容的难度和维护量极大

 日常工作中,我们通常会同时使用两种拆分方式,垂直拆分更偏向于产品/业务/功能拆分的过程,在技术上我们更关注水平拆分的方案。